.
.
.
.
.
.
.
.
.
.
.
.
Dios no existe
Seguramente, de todas las maneras de presentar la paradoja de Bertrand Russell, ésta es la más llamativa. Se pretende probar que Dios no existe, nada menos.
Pongámonos primero de acuerdo con lo que quiere decir Dios. Por definición, la existencia de Dios está igualada con la existencia de un ser todopoderoso. En la medida en que nosotros podamos probar que nada ni nadie puede ser omnipotente, entonces, nadie podrá adjudicarse el “ser Dios”.
Vamos a probar esto “por el absurdo”; o sea, vamos a suponer que el resultado es cierto y eso nos va a llevar a una contradicción.
Supongamos que Dios exista. Entonces, como hemos dicho, en tanto que Dios, debe ser todopoderoso. Lo que vamos a hacer es probar que no puede haber nadie todopoderoso. O lo que es lo mismo: no puede haber nadie que tenga todos los poderes.
Y hacemos así: si existiera alguien que tuviera todos los poderes, debería tener el poder de hacer piedras muy grandes. No le puede faltar este poder, porque, si no, ya demostraría que no es todopoderoso. Entonces, concluimos que tiene que tener el poder de hacer piedras muy grandes.
No sólo tiene que tener el poder de hacer piedras muy grandes, sino que tiene que ser capaz de hacer piedras que él no pueda mover....
No le puede faltar este poder (ni ningún otro, si vamos al caso). Luego, tiene que ser capaz de hacer piedras y que esas piedras sean muy grandes. Tan grandes que, eventualmente, él no las pueda mover.
Y ésta es la contradicción, porque si hay piedras que él no puede mover, eso significa que le falta un poder. Y si tales piedras no las puede hacer, eso significa que le falta ese poder.
En definitiva, cualquiera que pretenda ser todopoderoso adolecerá de un problema: o bien le falta el poder de hacer piedras tan grandes que él no pueda mover o bien existen piedras que él no puede mover.
De una u otra forma, no puede haber nadie todopoderoso (y eso era lo que queríamos probar).
..
.
.
.
.
.
.
.
En fin: fue un tipo muy especial. Ahora bien, escapa al objetivo de estas líneas contar todos sus logros dentro del terreno de la lógica, que fueron determinantes para la evolución de esa rama de la ciencia. Pero, sin ninguna duda, uno de los capítulos más interesantes tiene que ver con su célebre paradoja de los conjuntos que no se contienen a sí mismos como elementos.
.
.
.
~ imagen : kunga osel ~
~ texto : vía adrián paenza ~
.
.
..
.
.
.
No hay comentarios:
Publicar un comentario